Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Apoptosis ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459420

RESUMO

Hepatocellular carcinoma (HCC) is highly metastatic and invasive. CircRNA participates in gene regulation of multiple tumor metastases, but little is known whether it is a bystander or an actual player in HCC metastasis. We aim to explore the molecular mechanisms of novel circRNAs in HCC metastasis. RT-qPCR was used to detect the expression of 13 circRNAs derived by the ERBB3 gene. The function of circ_0098823 and DNM1L in HCC cells were estimated by CCK-8, transwell assays, flow cytometry, electron microscope, and in vivo experiments. RNA binding protein of circ_0098823 was confirmed by RNA pull-down, mass spectrometry, and RNA immunoprecipitation. The expression of DNM1L after IGF2BP3 knockdown was detected by RT-qPCR and western blot. Circ_0098823 was significantly up-regulated both in HCC tissues and HGF induced cell lines. Circ_0098823 overexpression significantly enhanced proliferation, migration, and invasion but decreased apoptosis of HCC cells, particularly promoted mitochondrial fission. Compared with the control group, the tumors in the circ_0098823 knockdown mice were significantly smaller and lighter. Circ_0098823 silencing suppressed DNM1L expression, a key molecule for fission, which enhanced proliferation, migration and invasion, and inhibited apoptosis of HCC cell. IGF2BP3 was a binding protein of circ_0098823. The expression and mRNA stability of DNM1L were down-regulated by IGF2BP3 knockdown. IGF2BP3 knockdown significantly alleviated the excessive migration, invasion and apoptosis of HCC cells caused by circ_0098823 overexpression. This study uncovered a novel circ_0098823 with tumor-promoting effect, and the mechanism by which circ_0098823 participates in HCC progression through IGF2BP3-guided DNM1L. Our study broadens molecular understanding of HCC progression.

2.
BMC Pediatr ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341530

RESUMO

BACKGROUND: Mitochondrial diseases are heterogeneous in terms of clinical manifestations and genetic characteristics. The dynamin 1-like gene (DNM1L) encodes dynamin-related protein 1 (DRP1), a member of the GTPases dynamin superfamily responsible for mitochondrial and peroxisomal fission. DNM1L variants can lead to mitochondrial fission dysfunction. CASE PRESENTATION: Herein, we report a distinctive clinical phenotype associated with a novel variant of DNM1L and review the relevant literature. A 5-year-old girl presented with paroxysmal hemiplegia, astigmatism, and strabismus. Levocarnitine and coenzyme Q10 supplement showed good efficacy. Based on the patient's clinical data, trio whole-exome sequencing (trio-WES) and mtDNA sequencing were performed to identify the potential causative genes, and Sanger sequencing was used to validate the specific variation in the proband and her family members. The results showed a novel de novo heterozygous nonsense variant in exon 20 of the DNM1L gene, c.2161C>T, p.Gln721Ter, which is predicted to be a pathogenic variant according to the ACMG guidelines. The proband has a previously undescribed clinical manifestation, namely hemiparesis, which may be an additional feature of the growing phenotypic spectrum of DNM1L-related diseases. CONCLUSION: Our findings elucidate a novel variant in DNM1L-related disease and reveal an expanding phenotypic spectrum associated with DNM1L variants. This report highlights the necessity of next generation sequencing for early diagnosis of patients, and that further clinical phenotypic and genotypic analysis may help to improve the understanding of DNM1L-related diseases.


Assuntos
Dinaminas , Proteínas Associadas aos Microtúbulos , Feminino , Humanos , Pré-Escolar , Proteínas Associadas aos Microtúbulos/genética , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Fenótipo , Mitocôndrias
3.
Autophagy ; : 1-24, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38261660

RESUMO

RAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase). Interestingly, accumulation of the outer mitochondrial membrane protein VDAC1 (voltage dependent anion channel 1) is observed in mutant KRAS-expressing cells upon exposure to C1. Conversely, silencing VDAC1 abolishes C1-induced mitophagy, and gene knockdown of either KRAS, AKT or DNM1L rescues ROS-dependent VDAC1 accumulation and stability, thus suggesting an axis of mutant active KRAS-phospho-AKT S473-ROS-DNM1L-VDAC1 in mitochondrial morphology change and cancer cell execution. Importantly, we identified MTOR (mechanistic target of rapamycin kinsase) complex 2 (MTORC2) as the upstream mediator of AKT phosphorylation at S473 in our model. Pharmacological or genetic inhibition of MTORC2 abrogated C1-induced phosphorylation of AKT S473, ROS generation and mitophagy induction, as well as rescued tumor colony forming ability and migratory capacity. Finally, increase in thermal stability of KRAS, AKT and DNM1L were observed upon exposure to C1 only in mutant KRAS-expressing cells. Taken together, our work has unraveled a novel mechanism of selective targeting of mutant KRAS-expressing cancers via MTORC2-mediated AKT activation and ROS-dependent mitofission, which could have potential therapeutic implications given the relative lack of direct RAS-targeting strategies in cancer.Abbreviations: ACTB/ß-actin: actin beta; AKT: AKT serine/threonine kinase; C1/merodantoin: 1,3-dibutyl-2-thiooxo-imidazoldine-4,5-dione; CAT: catalase; CETSA: cellular thermal shift assay; CHX: cycloheximide; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H2O2: hydrogen peroxide; HSPA1A/HSP70-1: heat shock protein family A (Hsp70) member 1A; HSP90AA1/HSP90: heat shock protein 90 alpha family class A member 1; KRAS: KRAS proto-oncogene, GTPase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; LC3B-I: unlipidated form of LC3B; LC3B-II: phosphatidylethanolamine-conjugated form of LC3B; MAPKAP1/SIN1: MAPK associated protein 1; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MFI: mean fluorescence intensity; MiNA: Mitochondrial Network Analysis; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; O2.-: superoxide; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; RICTOR: RPTOR independent companion of MTOR complex 2; ROS: reactive oxygen species; RPTOR/raptor: regulatory associated protein of MTOR complex 1; SOD1: superoxide dismutase 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; VDAC1: voltage dependent anion channel 1; VDAC2: voltage dependent anion channel 2.

4.
Epileptic Disord ; 26(1): 139-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009673

RESUMO

Dynamin-1 (DNM1) is involved in synaptic vesicle recycling, and DNM1 mutations can lead to developmental and epileptic encephalopathy. The neuroimaging of DNM1 encephalopathy has not been reported in detail. We describe a severe phenotype of DNM1 encephalopathy showing characteristic neuroradiological features. In addition, we reviewed previously reported cases who have DNM1 pathogenic variants with white matter abnormalities. Our case presented drug-resistant seizures from 1 month of age and epileptic spasms at 2 years of age. Brain MRI showed no progression of myelination, progression of diffuse cerebral atrophy, and a thin corpus callosum. Proton magnetic resonance spectroscopy showed a decreased N-acetylaspartate peak and diffusion tensor imaging presented with less pyramidal decussation. Whole-exome sequencing revealed a recurrent de novo heterozygous variant of DNM1. So far, more than 50 cases of DNM1 encephalopathy have been reported. Among these patients, delayed myelination occurred in two cases of GTPase-domain DNM1 encephalopathy and in six cases of middle-domain DNM1 encephalopathy. The neuroimaging findings in this case suggest inadequate axonal development. DNM1 is involved in the release of synaptic vesicles with the inhibitory transmitter GABA, suggesting that GABAergic neuron dysfunction is the mechanism of refractory epilepsy in DNM1 encephalopathy. GABA-mediated signaling mechanisms play important roles in axonal development and GABAergic neuron dysfunction may be cause of white matter abnormalities in DNM1 encephalopathy.


Assuntos
Encefalopatias , Epilepsia , Espasmos Infantis , Humanos , Dinamina I/genética , Imagem de Tensor de Difusão , Epilepsia/genética , Espasmos Infantis/genética , Mutação , Fenótipo , Ácido gama-Aminobutírico/genética
5.
Front Pediatr ; 11: 1266376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900685

RESUMO

Background: Developmental and epileptic encephalopathies (DEEs) signify a group of heterogeneous neurodevelopmental disorder associated with early-onset seizures accompanied by developmental delay, hypotonia, mild to severe intellectual disability, and developmental regression. Variants in the DNM1 gene have been associated with autosomal dominant DEE type 31A and autosomal recessive DEE type 31B. Methods: In the current study, a consanguineous Pakistani family consisting of a proband (IV-2) was clinically evaluated and genetically analyzed manifesting in severe neurodevelopmental phenotypes. WES followed by Sanger sequencing was performed to identify the disease-causing variant. Furthermore, 3D protein modeling and dynamic simulation of wild-type and mutant proteins along with reverse transcriptase (RT)-based mRNA expression were checked using standard methods. Results: Data analysis of WES revealed a novel homozygous non-sense variant (c.1402G>T; p. Glu468*) in exon 11 of the DNM1 gene that was predicted as pathogenic class I. Variants in the DNM1 gene have been associated with DEE types 31A and B. Different bioinformatics prediction tools and American College of Medical Genetics guidelines were used to verify the identified variant. Sanger sequencing was used to validate the disease-causing variant. Our approach validated the pathogenesis of the variant as a cause of heterogeneous neurodevelopmental disorders. In addition, 3D protein modeling showed that the mutant protein would lose most of the amino acids and might not perform the proper function if the surveillance non-sense-mediated decay mechanism was skipped. Molecular dynamics analysis showed varied trajectories of wild-type and mutant DNM1 proteins in terms of root mean square deviation, root mean square fluctuation and radius of gyration. Similarly, RT-qPCR revealed a substantial reduction of the DNM1 gene in the index patient. Conclusion: Our finding further confirms the association of homozygous, loss-of-function variants in DNM1 associated with DEE type 31B. The study expands the genotypic and phenotypic spectrum of pathogenic DNM1 variants related to DNM1-associated pathogenesis.

6.
Int J Biol Macromol ; 253(Pt 7): 127381, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838106

RESUMO

Mitochondrial division is a highly regulated process. The master regulator of this process is the multi-domain, conserved protein called Dnm1 in yeast. In this study, we systematically analyzed two residues, T62 and S277, reported to be putatively phosphorylated in the GTPase domain of the protein. These residues lie in the G2 and G5 motifs of the GTPase domain. Both residues are important for the function of the protein, as evident from in vivo and in vitro analysis of the non-phosphorylatable and phosphomimetic variants. Dnm1T62A/D and Dnm1S277A/D showed differences with respect to the protein localization and puncta dynamics in vivo, albeit both were non-functional as assessed by mitochondrial morphology and GTPase activity. Overall, the secondary structure of the protein variants was unaltered, but local conformational changes were observed. Interestingly, both Dnm1T62A/D and Dnm1S277A/D exhibited dominant-negative behavior when expressed in cells containing endogenous Dnm1. To our knowledge, we report for the first time a single residue (S277) change that does not alter the localization of Dnm1 but makes it non-functional in a dominant-negative manner. Intriguingly, the two residues analyzed in this study are present in the same domain but exhibit variable effects when mutated to alanine or aspartic acid.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Saccharomyces cerevisiae , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Cell Mol Life Sci ; 80(10): 302, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747543

RESUMO

Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l-/- ESCs maintained major pluripotency characteristics. However, Dnm1l-/- ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l-/- ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l-/- ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.


Assuntos
Ciclo Celular , Dinaminas , Glicólise , Células-Tronco Embrionárias Murinas , Células-Tronco Pluripotentes , Animais , Camundongos , Diferenciação Celular/genética , Divisão Celular , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Dinaminas/genética , Dinaminas/fisiologia , Deleção de Genes , Glicólise/genética
8.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762596

RESUMO

Mitochondria are crucial for cellular energy metabolism and are involved in signaling, aging, and cell death. They undergo dynamic changes through fusion and fission to adapt to different cellular states. In this study, we investigated the effect of knocking out the dynamin 1-like protein (Dnm1l) gene, a key regulator of mitochondrial fission, in neural stem cells (NSCs) differentiated from Dnm1l knockout embryonic stem cells (Dnm1l-/- ESCs). Dnm1l-/- ESC-derived NSCs (Dnm1l-/- NSCs) exhibited similar morphology and NSC marker expression (Sox2, Nestin, and Pax6) to brain-derived NSCs, but lower Nestin and Pax6 expression than both wild-type ESC-derived NSCs (WT-NSCs) and brain-derived NSCs. In addition, compared with WT-NSCs, Dnm1l-/- NSCs exhibited distinct mitochondrial morphology and function, contained more elongated mitochondria, showed reduced mitochondrial respiratory capacity, and showed a metabolic shift toward glycolysis for ATP production. Notably, Dnm1l-/- NSCs exhibited impaired self-renewal ability and accelerated cellular aging during prolonged culture, resulting in decreased proliferation and cell death. Furthermore, Dnm1l-/- NSCs showed elevated levels of inflammation and cell stress markers, suggesting a connection between Dnm1l deficiency and premature aging in NSCs. Therefore, the compromised self-renewal ability and accelerated cellular aging of Dnm1l-/- NSCs may be attributed to mitochondrial fission defects.


Assuntos
Senescência Celular , Mitocôndrias , Nestina , Mitocôndrias/genética , Células-Tronco Embrionárias
9.
J Clin Med ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445288

RESUMO

INTRODUCTION: The role of mitochondria in post coronavirus disease 2019 (post-COVID-19) complications is unclear, especially in the long-term pulmonary complications. This study aims to investigate the association between post-COVID-19 pulmonary complications and mitochondrial regulatory proteins in the context of oxidative stress. METHODOLOGY: Patients who had recovered from COVID-19 were enrolled. According to the evidence of persistent interstitial lung lesions on computed tomography (CT), patients were divided into a long-term pulmonary complications group (P(+)) and a control group without long-term pulmonary complications (P(-)). We randomly selected 80 patients for investigation (40 subjects for each group). Biomarkers levels were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: The serum concentrations of mitochondrial regulatory proteins were significantly higher in the P(+) group, including PTEN-induced kinase 1 (PINK1): 1.62 [1.02-2.29] ng/mL vs. 1.34 [0.94-1.74] ng/mL (p = 0.046); Dynamin-1-like protein (DNM1L): 1.6 [0.9-2.4] ng/mL IQR vs. 0.9 [0.5-1.6] ng/mL (p = 0.004); and Mitofusin-2 (MFN2): 0.3 [0.2-0.5] ng/mL vs. 0.2 [0.1-0.3] ng/mL IQR (p = 0.001). Patients from the P(+) group also had higher serum levels of chemokine ligand 18 (PARC, CCL18), IL-6, and tumour necrosis factor-alpha (TNF-α) cytokines than the P(-) group. The concentration of interferon alpha (IFN-α) was decreased in the P(+) group. Furthermore, we observed statistically significant correlations between the advanced glycation end product (sRAGE) and TNF-α (Pearson's factor R = 0.637; p < 0.001) and between serum levels of DNM1L and IFN-α (Pearson's factor R = 0.501; p = 0.002) in P(+) patients. CONCLUSIONS: Elevated concentrations of mitochondrial biomarkers in post-COVID-19 patients with long-term pulmonary complications indicate their possible role in the pathobiology of COVID-19 pulmonary sequelae. Oxidative stress is associated with the immune response and inflammation after COVID-19. TNF-α could be a promising biomarker for predicting pulmonary complications and may be a potential target for therapeutic intervention in patients with post-COVID-19 complications.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37132416

RESUMO

Dynamin 1 is a GTPase protein involved in synaptic vesicle fission, which facilitates the exocytosis of neurotransmitters necessary for normal signaling. Pathogenic variants in the DNM1 gene are associated with intractable epilepsy, often manifested as infantile spasms at onset, developmental delay, and a movement disorder, and are located in the GTPase and middle domains of the protein. We describe a 36-year-old man with autism and moderate intellectual disability who experienced only a few generalized seizures between the age 16 and 30 years. Using a whole sequencing approach, we identified the c.1994T>C p.(Leu665Pro) de novo novel missense pathogenic variant in the GTPase effector domain (GED) of the DNM1 protein. Structural analyses suggest that this substitution impairs both the stalk formation and its interactions, known to be important for the dynamin-1 physiological cellular function. Our data expand the spectrum of phenotypes associated with pathogenic variants in the DNM1 gene, linking a variant in the GED domain with autism and onset in the adolescence of mild epilepsy, a phenotypic presentation remarkably different from the early infantile epileptic encephalopathy associated with pathogenic variants in the GTPase or middle domains.

11.
Neurogenetics ; 24(3): 171-180, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039969

RESUMO

DNM1 developmental and epileptic encephalopathy (DEE) is characterized by severe to profound intellectual disability, hypotonia, movement disorder, and refractory epilepsy, typically presenting with infantile spasms. Most of the affected individuals had de novo missense variants in DNM1. DNM1 undergoes alternative splicing that results in expression of six different transcript variants. One alternatively spliced region affects the tandemly arranged exons 10a and 10b, producing isoforms DNM1A and DNM1B, respectively. Pathogenic variants in the DNM1 coding region affect all transcript variants. Recently, a de novo DNM1 NM_001288739.1:c.1197-8G > A variant located in intron 9 has been reported in several unrelated individuals with DEE that causes in-frame insertion of two amino acids and leads to disease through a dominant-negative mechanism. We report on a patient with DEE and a de novo DNM1 variant NM_001288739.2:c.1197-46C > G in intron 9, upstream of exon 10a. By RT-PCR and Sanger sequencing using fibroblast-derived cDNA of the patient, we identified aberrantly spliced DNM1 mRNAs with exon 9 spliced to the last 45 nucleotides of intron 9 followed by exon 10a (NM_001288739.2:r.1196_1197ins[1197-1_1197-45]). The encoded DNM1A mutant is predicted to contain 15 novel amino acids between Ile398 and Arg399 [NP_001275668.1:p.(Ile398_Arg399ins15)] and likely functions in a dominant-negative manner, similar to other DNM1 mutants. Our data confirm the importance of the DNM1 isoform A for normal human brain function that is underscored by previously reported predominant expression of DMN1A transcripts in pediatric brain, functional differences of the mouse Dnm1a and Dnm1b isoforms, and the Dnm1 fitful mouse, an epilepsy mouse model.


Assuntos
Sítios de Splice de RNA , Espasmos Infantis , Animais , Criança , Humanos , Camundongos , Éxons/genética , Mutação , Isoformas de Proteínas/genética , Sítios de Splice de RNA/genética , Espasmos Infantis/genética
12.
J Neurosci Res ; 101(8): 1345-1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031448

RESUMO

Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.


Assuntos
Tecido Nervoso , Peixe-Zebra , Animais , Masculino , Axônios , Neurônios/metabolismo , Sinapses/metabolismo , Mamíferos
13.
Mol Carcinog ; 62(6): 786-802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929853

RESUMO

Dynamin 1 Like (DNM1L), a member of dynamin superfamily capable of mediating mitochondrial outer membrane division, plays a key role in the progression of different types of tumors. However, the prognostic value, clinical significance of DNM1L and its specific mechanism involved in tumorigenesis of hepatocellular carcinoma (HCC) have not been investigated clearly. In this study, we found that the expression of DNM1L were significantly higher in HCC tissues than adjacent/normal liver tissues based on multiple data sets obtained from TCGA, GEO and ONCOMINE database, also its protein expression form Drp1 is significantly higher in HCC tissues than adjacent tissues, and is related to the degree of differentiation. Kaplan-Meier curves suggested that high DNM1L expression prominently correlated with poorer overall survival, progression-free survival, relapse-free survival and disease-specific survival. Multivariate analysis showed that higher DNM1L expression was independent prognostic factors of shorter overall survival and disease-free survival. Kyoto Encyclopedia of Genes and Genomes and Gene set enrichment analysis analysis combined with validation experiments revealed the regulatory role of DNM1L on key molecules in the metabolism of xenobiotics by cytochrome p450 pathway, and DNM1L may also affects invasion and metastasis capability of HCC by mediating extracellular matrix -receptor interaction pathway. Moreover, analysis showed that higher DNM1L, CYP2C9, CYP3A4, CYP1A2 expression were associated with the resistance to sorafenib therapy. TIMER and CIBERSORT analysis indicated that the increase of DNM1L expression may affect the infiltration of immune cells in the tumor microenvironment. Taken together, the above results indicated that DNM1L could be able to serve as a promising independent predictor and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Dinaminas , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/genética , Prognóstico , Microambiente Tumoral , Dinaminas/genética
14.
Front Neurol ; 14: 1133449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908591

RESUMO

Introduction: Parkinson's disease (PD) is a progressive movement disorder caused by a loss of dopaminergic neurons. Previous studies have highlighted the importance of mitochondria dynamics in the pathogenesis of PD. Dynamin-1-like (DNM1L) is a gene that encodes dynamin-related protein 1 (DRP1), a GTPase essential for proper mitochondria fission. In the present study, we evaluated the relationship between DNM1L variants and PD in the Chinese population. Methods: A total of 3,879 patients with PD and 2,931 healthy controls were recruited and burden genetic analysis combined with high-throughput sequencing was applied. Results: We identified 23 rare variants in the coding region of DNM1L, while no difference in variant burden was shown between the cases and controls. We also identified 201 common variants in the coding and flanking regions and found two significant SNPs, namely, rs10844308 and rs143794289 [odds ratio (OR) = 1.220 and 0.718, p = 0.025 and 0.036, respectively]. We also performed a meta-analysis to correlate the two SNPs with PD risk. However, none of the common variants was significant using logistic regression. Conclusion: Despite the critical role of DRP1, our study did not support the relationship between DNM1L variants and PD risk in the Chinese population.

15.
China Tropical Medicine ; (12): 426-2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-979704

RESUMO

@#Abstract: Objective To investigate the clinical characteristics and pathogenic genetic mutation of a case with encephalopathy due to defective mitochondrial and peroxisomal fission-1 (EMPF1). Methods The clinical data and genetic test results of a patient with EMPF1 admitted to the Department of Pediatrics, the Affiliated Hospital of Xiangya Medical College of Central South University in August 2020 were retrospectively analyzed. Results An 8-year-old girl, her main clinical features were developmental regression, microcephaly, hypotonia, refractory epilepsy, cranial MRI suggesting brain atrophy and abnormal signals in the right temporal-occipital-parietal cortex, aEEG showing slow wave discharge in the right hemisphere; Whole-exome sequencing of families suggested that the child had a heterozygous missense variant at the c.1040C>G site in the DNM1L gene and the verification results by Sanger sequencing showed that her parents had no variant in this site, which was a novel mutation in accordance with autosomal dominant inheritance; bioinformatics analysis predicted that the mutation was pathogenic. After 2 years of outpatient follow-up, the patient's condition was stable after mitochondrial cocktail therapy and antiepileptic drugs, no epileptic seizure occurred in the past year, mental state and swallowing function improved, and she could be fed orally with occasional nausea and vomiting. Conclusions The main clinical manifestations of EMPF1 are psychomotor developmental delay or regression, dystonia, limb paralysis, epilepsy and so on. According to the clinical phenotype and genetic test results, the rare disease can be diagnosed early.

16.
J Pediatr Neurol ; 21(6): 475-478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38481935

RESUMO

DMN1L encodes for dynamin-like protein 1 (DLP1) which plays a key role in perixosomal and mitochondrial fission. Individuals with heterozygous variants in DNM1L present with a wide range of neurologic symptoms, including encephalopathy, epilepsy, and motor deficits. Here we report on a woman presenting with adolescence onset of sensory neuronopathy, spasticity, dystonia, and ataxia. Trio genome sequencing identified a heterozygous variant in DNM1L (NM_012062.3 c.121G>A/p.Val41Met) which was thought to be pathogenic. This case describes the latest known symptomatic onset of DMN1L-related disease described in literature. We highlight our approach to a challenging diagnostic workup and interpretation of a specific variant that has not been previously reported. Furthermore, the case highlights the diagnostic importance of utilizing genomic sequencing and research studies for patients with rare disease.

17.
Transl Lung Cancer Res ; 12(12): 2476-2493, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38205213

RESUMO

Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer (NSCLC), with poor treatment outcomes worldwide. Dynamin-related protein 1 (DRP1), which is encoded by the dynamin 1-like (DNM1L) gene, acts as a regulator of mitochondrial fission and plays crucial roles in tumor initiation and progression. However, the clinical value and immune regulation of DNM1L in LUAD have not been explored. Methods: We comprehensively analyzed the expression of DNM1L in the LUAD cohort of the Human Protein Atlas (HPA) and the University of The ALabama at Birmingham CANcer data analysis Portal (UALCAN) databases. Kaplan-Meier plotter, in addition to the PrognoScan database, was used to estimate the correlation between DNM1L expression and survival outcome of LUAD patients. The association between the immune tumor microenvironment (TME) and DNM1L expression in LUAD was evaluated based on the Tumor IMmune Estimation Resource (TIMER)2.0 database. Finally, the functions of DNM1L were validated in vitro experiments, including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, wound healing assays, and transwell assays. Results: DNM1L was overexpressed in LUAD compared to healthy control tissues and was regarded as an independent prognostic factor. Overexpression of DNM1L was significantly related to clinical variables and poor survival outcomes of LUAD patients. Moreover, DNM1L expression was positively associated with the expression of key genes involved in the regulation of immune cell subsets, including T helper (Th)2 cells, Th cells, B cells, CD8 T cells, dendritic cells, and mast cells. In contrast, DNM1L was negatively correlated with the infiltrating levels of myeloid dendritic cells and B cells. Furthermore, DNM1L may play a role in regulating immune cell infiltration and have prognostic value in LUAD patients. Finally, the in vitro experiments showed that increased DNM1L significantly promoted the proliferation and migration of LUAD cells. Conclusions: This study suggested that DNM1L may play an important role in regulating the proliferation and migration of LUAD cells as well as the infiltration of tumor-related immune cells, which suggests DNM1L was a potential therapeutic target in LUAD. Further studies are however warranted to define its exact mechanism of action and potential therapeutic significance in LUAD patients.

18.
Genes (Basel) ; 13(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36553519

RESUMO

Heterozygous pathogenic variants in DNM1 are linked to an autosomal dominant form of epileptic encephalopathy. Recently, homozygous loss-of-function variants in DNM1 were reported to cause an autosomal recessive form of developmental and epileptic encephalopathy in unrelated patients. Here, we investigated a singleton from a first-degree cousin marriage who presented with facial dysmorphism, global developmental delay, seizure disorder, and nystagmus. To identify the involvement of any likely genetic cause, diagnostic clinical exome sequencing was performed. Comprehensive filtering revealed a single plausible candidate variant in DNM1. Sanger sequencing of the trio, the patient, and her parents, confirmed the full segregation of the variant. The variant is a deletion leading to a premature stop codon and is predicted to cause a protein truncation. Structural modeling implicated a complete loss of function of the Dynamin 1 (DNM1). Such mutation is predicted to impair the nucleotide binding, dimer formation, and GTPase activity of DNM1. Our study expands the phenotypic spectrum of pathogenic homozygous loss-of-function variants in DNM1.


Assuntos
Epilepsia Generalizada , Epilepsia , Feminino , Humanos , Dinamina I/genética , Epilepsia/genética , Homozigoto , Mutação
19.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362420

RESUMO

Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.


Assuntos
Glaucoma , Animais , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Dinaminas/metabolismo , Células Ganglionares da Retina/metabolismo , Dinâmica Mitocondrial , Modelos Animais de Doenças , Imunoterapia
20.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413998

RESUMO

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Assuntos
Encefalopatias , Dinaminas , Síndromes Epilépticas , Humanos , Encefalopatias/genética , Causalidade , Dinaminas/genética , Éxons/genética , Heterozigoto , Mutação/genética , Síndromes Epilépticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...